



The Positive Effect of Formaldehyde on the Photocatalytic 1 Renoxification of Nitrate on TiO<sub>2</sub> Particles 2 3 Yuhan Liu, Xuejiao Wang, Mengshuang Sheng, Chunxiang Ye, Jing Shang\* 4 State Key Joint Laboratory of Environmental Simulation and Pollution Control, 5 College of Environmental Sciences and Engineering, Peking University, 5 Yiheyuan 6 7 Road, Beijing 100871, P. R. China 8 Corresponding author: Jing Shang 9 Email: shangjing@pku.edu.cn 10 11 12 **Abstract** Renoxification is the recycling of NO<sub>3</sub>-/HNO<sub>3</sub> into NO<sub>x</sub> under illumination; it is 13 promoted by the photocatalysis of TiO<sub>2</sub>. Formaldehyde (HCHO), the most abundant 14 carbonyl compound in the atmosphere, may participate in the renoxification of 15 nitrate-doped TiO2 (NO3-TiO2) aerosols. In this study, we established an 16 17 environmental chamber reaction system under different light sources, excluding direct photolysis of nitrate by adjusting the illumination wavelength, to explore the 18 photocatalytic renoxification process. It is suggested that HCHO and TiO2 have a 19 synergistic effect on photocatalytic renoxification 20 significant via the NO<sub>3</sub>-NO<sub>3</sub>-HCHO-HNO<sub>3</sub>-NO<sub>x</sub> pathway. Adsorbed HCHO may react with nitrate 21 radicals through hydrogen abstraction to form HNO3 on the surface, resulting in the 22

1





mass generation of NO<sub>x</sub>. We found that for 4 wt% NO<sub>3</sub><sup>-</sup>-TiO<sub>2</sub> aerosols (e.g., KNO<sub>3</sub>-TiO<sub>2</sub>), the NO<sub>x</sub> concentration reached up to 110 ppb, and was 2 orders of magnitude higher than in the absence of HCHO. Nitrate type and contents, relative humidity, and HCHO concentration were found to influence NO<sub>x</sub> release. The significant synergistic enhancement effect of renoxification affects photochemical processes such as atmospheric oxidation and nitrogen cycling on the surfaces of particles containing semiconductor oxides, with the participation of hydrogen donor

31

32

30

#### 1 Introduction

organics.

The levels of ozone  $(O_3)$  and hydroxyl radicals  $(\cdot OH)$  in the troposphere can be 33 34 promoted by nitrogen oxides ( $NO_x = NO + NO_2$ ), such that  $NO_x$  plays an important role in the formation of secondary aerosols and atmospheric oxidants (Platt et al., 35 1980; Stemmler et al., 2006; Harris et al., 1982; Finlayson-Pitts and Pitts, 1999). NO<sub>x</sub> 36 can be converted into nitric acid (HNO<sub>3</sub>) and nitrate (NO<sub>3</sub><sup>-</sup>) through a series of 37 38 oxidation and hydrolysis reactions and is eventually removed from the atmosphere through subsequent wet or dry deposition (Dentener and Crutzen, 1993; Goodman et 39 al., 2001; Monge et al., 2010; Bedjanian and El Zein, 2012). However, comparisons 40 of observations and modeling results for the marine boundary layer, land, and free 41 troposphere (Read et al., 2008; Lee et al., 2009; Seltzer et al., 2015) have shown 42 underestimation of HNO<sub>3</sub> or NO<sub>3</sub> content, NO<sub>x</sub> abundance, and NO<sub>x</sub>/HNO<sub>3</sub> ratios, 43 indicating the presence of a new, rapid NO<sub>x</sub> circulation pathway (Ye et al., 2016b; 44





Reed et al., 2017). Some researchers have suggested that deposited NO<sub>3</sub><sup>-</sup> and HNO<sub>3</sub> 45 46 can be recycled back to gas phase NO<sub>x</sub> under illumination, via the renoxification process (Schuttlefield et al., 2008; Romer et al., 2018; Bao et al., 2020; Shi et al., 47 2021b). Photolytic renoxification occurs under light with a wavelength of < 350 nm, 48 49 through the photolysis of NO<sub>3</sub><sup>-</sup>/HNO<sub>3</sub> adsorbed on the solid surface to generate NO<sub>x</sub>. Notably, the photolysis of NO<sub>3</sub>-HNO<sub>3</sub> is reported to occur at least 2 orders of 50 51 magnitude faster on different solid surfaces (natural or artificial) or aerosols than in 52 the gas phase (Ye et al., 2016a; Zhou et al., 2003; Baergen and Donaldson, 2013). 53 Several recent studies have shown that renoxification has important atmospheric significance (Deng et al., 2010; Kasibhatla et al., 2018; Romer et al., 2018; Alexander 54 et al., 2020), providing the atmosphere with a new source of photochemically reactive 55 nitrogen species, i.e., HONO or NO<sub>x</sub>, resulting in the production of more 56 photooxidants such as O<sub>3</sub> or OH (Ye et al., 2017), which further oxidize volatile 57 organic compounds (VOCs), leading to the formation of more chromophores, thereby 58 affecting the photochemical process (Bao et al., 2020). 59 60 Renoxification processes have recently been observed on different types of atmospheric particles, such as urban grime and mineral dust (Ninneman et al., 2020; 61 Bao et al., 2018; Baergen and Donaldson, 2013; Ndour et al., 2009). Atmospheric 62 titanium dioxide (TiO2) is mainly derived from windblown mineral dust, with mass 63 mixing ratios ranging from 0.1 to 10% (Chen et al., 2012). TiO2 is widely used in 64 industrial processes and building exteriors for its favorable physical and chemical 65 properties. Titanium and nitrate ions have been found to coexist in atmospheric 66





67 particulates in different regions worldwide (Sun et al., 2005; Schwartz-Narbonne et al., 68 2019). The relative content of TiO<sub>2</sub> and NO<sub>3</sub> in atmospheric particles varies greatly, and nitrate-coated TiO<sub>2</sub> (NO<sub>3</sub><sup>-</sup>-TiO<sub>2</sub>) aerosols containing TiO<sub>2</sub> as the main body can 69 be used to effectively represent particles for sandstorm modeling (Sun et al., 2005; 70 71 Kim et al., 2012). TiO<sub>2</sub> is a semiconductor metal oxide that can facilitate the photolysis of nitrate and the release of NO<sub>x</sub> due to its photocatalytic activity (Ndour et 72 73 al., 2009; Chen et al., 2012; Verbruggen, 2015; Schwartz-Narbonne et al., 2019). 74 Under ultraviolet (UV) light, TiO<sub>2</sub> generates electron-hole pairs in the conduction and valence bands, respectively (Linsebigler et al., 1995). Nitrate ions adsorbed at the 75 oxide surface react with the photogenerated holes (h<sup>+</sup>) to form nitrate radicals (NO<sub>3</sub>·), 76 which are subsequently photolyzed to NO<sub>x</sub>, mainly under visible light illumination 77 78 (Schuttlefield et al., 2008; George et al., 2015; Schwartz-Narbonne et al., 2019). Thus, the renoxification of NO<sub>3</sub><sup>-</sup> is faster on TiO<sub>2</sub> than on other oxides in mineral dust 79 aerosols such as SiO<sub>2</sub> or Al<sub>2</sub>O<sub>3</sub> (Lesko et al., 2015; Ma et al., 2021). In this study, we 80 refer to renoxification involving h<sup>+</sup> and NO<sub>3</sub><sup>-</sup> in the reaction as photocatalytic 81 82 renoxification based on the photocatalytic properties of TiO<sub>2</sub>. Many previous studies have focused mainly on particulate nitrate-NO<sub>x</sub> 83 photochemical cycling reactions, despite the potential impact of other reactant gases 84 in the atmosphere. Formaldehyde (HCHO), the most abundant carbonyl compound in 85 86 the atmosphere, which can react at night with NO<sub>3</sub> via hydrogen abstraction reactions to form HNO<sub>3</sub> (Atkinson, 1991). Our previous study showed that the degradation rate 87 of HCHO was faster on NO<sub>3</sub><sup>-</sup>-TiO<sub>2</sub> aerosols than on TiO<sub>2</sub> particles, perhaps as a result 88





of HCHO oxidation by NO<sub>3</sub> (Shang et al., 2017). To date, no studies have reported the 89 90 effect of HCHO on photocatalytic renoxification. Adsorbed HCHO would react with NO<sub>3</sub> generated on the NO<sub>3</sub>-TiO<sub>2</sub> aerosol surface, thus alter the surface nitrogenous 91 species and renoxification process. The present study is the first to explore the 92 93 combined effect of HCHO and photocatalytic TiO2 particles on the renoxification of nitrate. The wavelengths of the light sources were adjusted to exclude photolytic 94 95 renoxification while making photocatalytic renoxification available for better elucidate the reaction mechanism. We investigated the effects of various influential 96 97 factors including nitrate type, nitrate content, RH, and initial HCHO concentration, to understand the atmospheric renoxification of nitrate in greater detail. 98

# 99 2 Methods

100

101

102

103

104

105

106

107

108

109

110

## 2.1 Environmental chamber setup

Details of the experimental apparatus and protocol used in the current study have been previously described (Shang et al., 2017). Briefly, the main body of the environmental chamber is a 400 L polyvinyl fluoride (PVF) bag filled with synthetic air (high purity N<sub>2</sub> (99.999%) mixed with high purity O<sub>2</sub> (99.999%) in the ratio of 79:21 by volume, Beijing Huatong Jingke Gas Chemical Co.). The chamber is capable of temperature (~293 K) and relative humidity (0.8–70%) control using a water bubbler and air conditioners, respectively. The chamber is equipped with two light sources both with the central wavelength of 365 nm. One is a set of tube lamps with a main spectrum of 320–400 nm and a small amount of 480-600 nm visible light (Figure S1a). The other is a set of Light-emitting diode (LED) lamps with a narrow main spectrum of 350-390





nm (Figure S1b). The light intensities for the tube and LED lamp at 365 nm were 300 111 μW·cm<sup>-2</sup> and 200 μW·cm<sup>-2</sup>, respectively, measured in the middle of the chamber. 112 Aerosol samples were introduced into the chamber by a transient high-pressure 113 114 airflow. NO<sub>x</sub> concentrations at the outlet of the chamber were monitored by a 115 chemiluminescence NO<sub>x</sub> analyzer (ECOTECH, EC9841B). HCHO was generated by thermolysis of paraformaldehyde at 70 °C and detected via acetyl acetone 116 117 spectrophotometric method using a UV-Vis spectrophotometer (PERSEE, T6) or a fluorescence spectrophotometer (THERMO, Lumina), depending on different initial 118 HCHO concentrations. The particle size distribution was measured by a Scanning 119 Nano Particle Spectrometer (HCT, SNPS-20). Electron Spin Resonance 120 (Nuohai Life Science, MiniScope MS 5000) was used to measure OH on the surface 121 122 of particles. 5,5-dimethl-1-pyrroline-N-oxide (DPMO, Enzo) was used as the capture agent. 50 μL particle-containing suspension mixed with 50 μL DMPO (concentration 123 of 200 µM) was loaded in a 1 mm capillary. Four 365 nm LED lamps were placed 124 side by side vertically at a distance of about 1 cm from the capillary, and the 125 126 measurement was carried out after 1 min of irradiation. The modulation frequency was 100 kHz, the modulation amplitude was 0.2 mT, the microwave power was 10 127 mW and the sweep time was 60 s. 128 2.2 Nitrate-TiO<sub>2</sub> composite samples 129 130 In our experiments, two nitrate salts, potassium nitrate (AR, Beijing Chemical Works Co., Ltd) or ammonium nitrate (AR, Beijing Chemical Works Co., Ltd), were 131 complexed with pure TiO₂ (≥ 99.5%, Degussa AG) powder or TiO₂ (1 wt.%)/SiO₂ 132





mixed powder to prepare NO<sub>3</sub><sup>-</sup>-TiO<sub>2</sub> or NO<sub>3</sub><sup>-</sup>-TiO<sub>2</sub>(1 wt.%)/SiO<sub>2</sub> samples. TiO<sub>2</sub> was 133 134 simply mixed in nitrate solutions at the desired mass mixing ratio (with nitrate content of 1 wt.%, 4 wt.%, 20 wt.%, 80 wt.% and 95 wt.%) to obtain a mash. The mash was 135 dried at 90 °C and then ground carefully to ensure a uniform composite of particles. 136 137 SiO<sub>2</sub> (AR, Xilong Scientific Co., Ltd.) with no optical activity was also chosen for comparison, and samples of KNO3-SiO2 and KNO3-TiO2(1 wt.%)/SiO2 samples with 138 139 a potassium nitrate content of 4 wt.% were prepared. The blank TiO<sub>2</sub> sample was solved in pure water with the same procedure as mentioned above. 4 wt.% 140 141 HNO<sub>3</sub>-TiO<sub>2</sub> composite particles were prepared for comparison. Concentrated nitric acid (AR, Beijing Chemical Works Co., Ltd) was diluted to 1 M and TiO<sub>2</sub> was added 142 to the nitric acid solution and stirred evenly. A layer of aluminum foil was covered on 143 144 the surface of the HNO<sub>3</sub>-TiO<sub>2</sub> homogenate and dried naturally in the room. After air-drying, follow the same steps above to grind for use. We also selected Arizona Test 145 Dust (ATD, Powder Technology Inc.), whose chemical composition and weight 146 percentage were shown in Table S1, as a substitute of NO<sub>3</sub><sup>-</sup>/TiO<sub>2</sub> to investigate the 147 148 "photocatalytic renoxification" process of nitrate and the positive effect of HCHO. 2.3 Environmental chamber experiments 149 The experiments carried out in the environmental chamber can be divided into two 150 categories according to whether HCHO was involved or not. (1) No HCHO 151 involvement in the reaction. The PVF bag was inflated by 260 L synthetic air, and 152 then 75 mg TiO<sub>2</sub> particles were sprayed into PVF bag. As shown in Figure S2, the 153

concentration of the particles decreased rapidly due to the sedimentation of the larger





particles and the electrostatic adsorption of the particles by the environmental 155 156 chamber. The size distribution of TiO<sub>2</sub> reached stable after about 60 min with the peak particle size was about 120 nm, similar to that of atmospheric particles in some urban 157 areas in China (Wang et al., 2015; Li et al., 2019). The size distribution could 158 159 maintain for more than 4 hours, with the number concentration in the chamber decreased by no more than 5% per hour. (2) With the participation of HCHO. The 160 161 PVF bag was inflated by 125 L synthetic air, followed by the introduction of HCHO, 162 and then the chamber was filled up with zero air to about 250 L. It can be seen from 163 Figure S3 that it took about 60 min for the HCHO concentration to reach stable. Then, 75 mg TiO<sub>2</sub> or NO<sub>3</sub>-/TiO<sub>2</sub> powders were introduced and the concentration of HCHO 164 decreased upon the introduction. It took about another 60 min for HCHO 165 concentration to get stable. After the concentrations of both HCHO and aerosol 166 167 became stable, the lamps were turned on and the concentrations of  $NO_x$  were monitored. 168 To determine the background value of NO<sub>x</sub> in the reaction system, four blank 169 170 experiments were carried out under illumination without nitrate: "synthetic air", "synthetic air + TiO<sub>2</sub>", "synthetic air + HCHO" and "synthetic air + HCHO + TiO<sub>2</sub>". 171 In the blank experiments of "synthetic air" and "synthetic air + TiO<sub>2</sub>", the NO<sub>x</sub> 172 concentration remained stable during 180 min illumination, and the concentration 173 174 change was no more than 0.5 ppb (Figure S4a). Therefore, the environmental chamber, synthetic air and the surface of TiO<sub>2</sub> particles were thought to be relatively clean, and 175 there was no generation and accumulation of NO<sub>x</sub> under illumination. When HCHO 176

178

179

180

181

182

183

184

185





was introduced into the environmental chamber, NO<sub>x</sub> accumulated ~2 ppb in 120 min with or without TiO<sub>2</sub> particles (Figure S4b). Compared with the blank experiment results when there was no HCHO, NO<sub>x</sub> might come from the generation process of HCHO (impurities in paraformaldehyde). However, considering the high concentration level of NO<sub>x</sub> produced in the NO<sub>3</sub><sup>-</sup>-TiO<sub>2</sub> system containing HCHO under the same conditions in this study (see later in Figure 2), the NO<sub>x</sub> generated in this blank experiment can be negligible.

### 3 Results and discussion

## 3.1 The positive effect of TiO<sub>2</sub> on the renoxification process

We investigated the photocatalytic role of TiO<sub>2</sub> on renoxification. The light source 186 was two 365 nm tube lamps containing small amounts of 400-600 nm visible light; 187 this setup was suitable for exciting TiO2 and the photolysis of available nitrate 188 189 radicals. Raw NO<sub>x</sub> data measured in the chamber under dark and illuminated conditions for 4 wt.% KNO<sub>3</sub>-SiO<sub>2</sub> and 4 wt.% KNO<sub>3</sub>-TiO<sub>2</sub> (1 wt.%)/SiO<sub>2</sub> are shown 190 in Figure 1. The ratio of 1 wt. % TiO2 to SiO2 corresponds to their ratio in sand and 191 dust particles. We observed no NOx in the KNO3-SiO2 sample under dark or 192 illumination, indicating very weak direct photolysis of nitrate under our 365 nm 193 tube-lamp illumination conditions. However, when the sample containing TiO<sub>2</sub>/SiO<sub>2</sub> 194 was illuminated, NO<sub>x</sub> continually accumulated in the chamber. This finding confirms 195 196 that NO<sub>x</sub> production arising from photodissociation of NO<sub>3</sub> on TiO<sub>2</sub>/SiO<sub>2</sub> was caused by the photocatalytic property of TiO<sub>2</sub> (i.e., photocatalytic renoxification) and was not 197 due to the direct photolysis of NO<sub>3</sub><sup>-</sup> (photolytic renoxification). 198





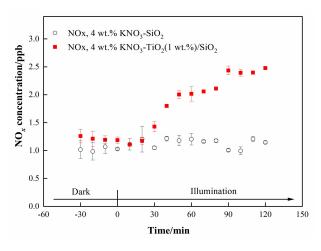



Figure 1. Effect of illumination on the release of  $NO_x$  from 4 wt.%  $KNO_3$ -SiO<sub>2</sub> and 4

wt.% KNO<sub>3</sub>-TiO<sub>2</sub>(1 wt.%)/SiO<sub>2</sub> at 293 K and 0.8% of relative humidity. 365 nm tube

lamps were used during the illumination experiments.

 $TiO_2$  can be excited by UV illumination to generate electron-hole pairs, and the  $h^+$  can react with adsorbed  $NO_3^-$  to produce  $NO_3^-$  (Ndour et al., 2009). Thus, in the present study,  $NO_3^-$  mainly absorbed visible light emitted from the tube lamps, which was subsequently photolyzed to  $NO_x$  through Eqs. (3) and (4) (Wayne et al., 1991), which explains why  $NO_x$  was observed in this study. Thus, we demonstrated that  $TiO_2$  can be excited at illumination wavelengths of ~365 nm, even when then content was very low, and that  $NO_x$  accumulated due to the production and further phytolysis of  $NO_3^-$ . However, the production rate of  $NO_x$  was very slow, reaching only 1.3 ppb during 90 min of illumination. This result may have been caused by the blocking effect of  $K^+$  on  $NO_3^-$ .  $K^+$  forms ion pairs with  $NO_3^-$ , and electrostatic repulsion between  $K^+$  and  $h^+$  prevents  $NO_3^-$  from combining with  $h^+$  to generate  $NO_3^-$  to a certain extent, thereby weakening the positive effect of  $TiO_2$  on the renoxification of





<sup>215</sup> KNO<sub>3</sub> (Rosseler et al., 2013).

$$TiO_2 + hv (\lambda < 390 \text{ nm}) \rightarrow e^- + h^+ \tag{1}$$

$$116 \qquad NO_3 + h^+ \rightarrow NO_3. \tag{2}$$

$$NO_3$$
· + hv ( $\lambda$  < 640 nm)  $\rightarrow$   $NO_2$  +O· (3)

$$NO_3$$
· + hv (585 nm <  $\lambda$  < 640 nm)  $\rightarrow$  NO +O<sub>2</sub> (4)

## 217 3.2 The synergistic positive effect of TiO<sub>2</sub> and HCHO on the renoxification

218 process

230

231

232

LED lamps with a wavelength range of 350-390 nm and no visible light were used to 219 irradiate 4 wt.% KNO<sub>3</sub>-TiO<sub>2</sub> without generating NO<sub>x</sub> (NO<sub>2</sub> and NO concentrations 220 fluctuate within the error range of the instrument) (Figure S5). TiO<sub>2</sub> can be excited 221 222 under this range of irradiation, producing NO<sub>3</sub> radicals as discussed above. The lack of NO<sub>x</sub> generation indicates that neither nitrate photolysis nor NO<sub>3</sub> photolysis 223 occurred under 365 nm LED lamp illumination conditions. In addition, it has been 224 shown that NO<sub>3</sub>· photolysis only occurs in visible light (Aldener et al., 2006). 225 226 Therefore, the LED lamp setup was used in subsequent experiments to exclude the direct photolysis of both KNO3 and NO3·, but allow the excitation of TiO2. This 227 approach allowed us to investigate the process of photocatalytic renoxification caused 228 by HCHO in the presence of photogenerated NO<sub>3</sub>·. 229

Atmospheric trace gases can undergo photocatalytic reactions on the surface of TiO<sub>2</sub> (Chen et al., 2012). As the illumination time increased, the concentration of HCHO showed a linear downward trend, which was consistent with zero-order





reaction kinetics (Figure S6). The zero-order reaction rate constants of HCHO on 233  $TiO_2$  and 4 wt.%  $KNO_3$ - $TiO_2$  particles were  $9.1 \times 10^{-3}$  and  $1.4 \times 10^{-2}$  ppm min<sup>-1</sup>, 234 respectively, which were much higher than that for gaseous HCHO photolysis (Shang 235 et al., 2017). We suggested that the produced NO<sub>3</sub>· contributed to the enhanced uptake 236 237 of HCHO. Therefore, we suggest that NO<sub>3</sub>· production contributed to enhanced HCHO uptake. Future studies should explore whether HCHO affects the 238 239 photocatalytic renoxification of NO<sub>3</sub><sup>-</sup>-TiO<sub>2</sub>. 240 Variation in NO<sub>x</sub> concentration within the chamber containing nitrate-TiO<sub>2</sub> particles with or without HCHO is shown in Figure 2. For KNO<sub>3</sub>-TiO<sub>2</sub> particles, the 241 NO<sub>x</sub> concentration began to increase upon irradiation in the presence of HCHO, 242 reaching ~110 ppb within 120 min. This result indicates that HCHO greatly promoted 243 244 photocatalytic renoxification of KNO<sub>3</sub> on the surfaces of TiO<sub>2</sub> particles. This reaction process can be divided into two stages: a rapid increase within the first 60 min and a 245 slower increase within the following 60 min, each consistent with zero-order reaction 246 kinetics. The slow stage is due to the photodegradation of HCHO on KNO<sub>3</sub>-TiO<sub>2</sub> 247 248 aerosols, which led to a decrease in its concentration, gradually weakening the positive effect. NO<sub>x</sub> is the sum of NO<sub>2</sub> and NO, both of which showed a two-stage 249 concentration increase. The NO<sub>2</sub> generation rate was nearly 6 times that of NO, as 250 compared to using the zero-order rate constant within 60 min (1.18 ppb min<sup>-1</sup> NO<sub>2</sub>, R<sup>2</sup> 251 = 0.96; 0.19 ppb min<sup>-1</sup> NO,  $R^2 = 0.91$ ). This burst-like generation of NO<sub>x</sub> can be 252 ascribed to the reaction between generated NO<sub>3</sub>· and HCHO via hydrogen abstraction 253 to form adsorbed nitric acid (HNO<sub>3</sub>(ads)) on TiO<sub>2</sub> particles. Based on the analysis of 254





the absorption cross section of HNO<sub>3</sub> adsorbed on fused silica surface, the HNO<sub>3</sub>(ads) 255 absorption spectrum has been reported to be red-shifted compared to HNO<sub>3</sub>(g), 256 extending from 350 to 365 nm, with a simultaneous cross-sectional increase (Du and 257 Zhu, 2011). Therefore, HNO<sub>3</sub>(ads) was subjected to photolysis to produce NO<sub>2</sub> and 258 259 HONO (Eqs. (6)-(8)) under the LED lamp used in this study. A previous study of HNO<sub>3</sub> photolysis on the surface of Pyrex glass showed that the ratio of the formation 260 261 rates of photolysis products  $(J_{NOx}/J_{(NOx+HONO)})$  was > 97% at RH = 0% (Zhou et al., 2003), suggesting that  $NO_x$  is the main gaseous product under dry conditions. Thus, 262 the effect of HONO on product distribution and NO<sub>x</sub> concentration was negligible in 263 this study. Together, these results suggest that NO<sub>3</sub>· and HCHO generate HNO<sub>3</sub>(ads) 264 on particle surfaces through hydrogen abstraction, which contributes to the substantial 265 266 release of NO<sub>x</sub> via photolysis. This photocatalytic renoxification via the NO<sub>3</sub>-NO<sub>3</sub>-HCHO-HNO<sub>3</sub>-NO<sub>r</sub> pathway is important considering the high abundance 267 of hydrogen donor organics in the atmosphere. 268

$$NO_3$$
· + HCHO  $\rightarrow$  CHO· + HNO<sub>3</sub>(ads) (5)

$$HNO_3(ads) + hv \rightarrow [HNO_3]^*(ads)$$
 (6)

$$[HNO3]^*(ads) \rightarrow HNO2(ads) + O(^3P)(ads)$$
 (7)

$$[HNO_3]^*(ads) \rightarrow NO_2(ads) + \cdot OH(ads)$$
 (8)

269





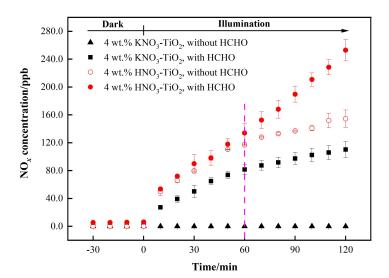



Figure 2. Effect of formaldehyde on the renoxification processes of different nitrate-

doped particles at 293 K and 0.8% of relative humidity. 365 nm LED lamps were used

during the illumination experiment. The initial concentration of HCHO was about 9

274 ppm.

To demonstrate the proposed HCHO mechanism and the photolysis contribution of HNO<sub>3</sub> to NO<sub>x</sub>, we prepared an HNO<sub>3</sub>-TiO<sub>2</sub> sample by directly dissolving TiO<sub>2</sub> into dilute nitric acid. The formation of NO<sub>x</sub> on HNO<sub>3</sub>-TiO<sub>2</sub> without HCHO under illumination was obvious (Figure 2), and occurred even more rapidly than that on KNO<sub>3</sub>-TiO<sub>2</sub> with HCHO. The renoxification of HNO<sub>3</sub>-TiO<sub>2</sub> particles was further enhanced following the introduction of HCHO. The NO<sub>x</sub> concentration increased by ~250 ppb after 2 h of illumination, which was 2.2 times faster than the increase in KNO<sub>3</sub>-TiO<sub>2</sub> concentration under the same conditions. This difference is due to the fact that HNO<sub>3</sub> dissociates on particle surfaces to generate NO<sub>3</sub><sup>-</sup>, such that HNO<sub>3</sub> exists on TiO<sub>2</sub> as both HNO<sub>3</sub>(ads) and NO<sub>3</sub><sup>-</sup>(ads). Similarly, NO<sub>3</sub><sup>-</sup>(ads) completed the





NO<sub>3</sub>-NO<sub>3</sub>-HCHO-HNO<sub>3</sub>-NO<sub>x</sub> pathway as described above through the reaction 285 process shown in Eqs. (2) to (8). The rates of NO<sub>x</sub> production from HNO<sub>3</sub>-TiO<sub>2</sub> 286 particles with and without HCHO were similar for the first 60 min (Figure 2), mainly 287 due to the direct photolysis of partial HNO<sub>3</sub>(ads). However, after 60 min, NO<sub>x</sub> was 288 289 generated rapidly in the presence of HCHO, perhaps due to the dominant photocatalytic renoxification of NO<sub>3</sub> (ads). These findings indicate that HCHO 290 291 converts NO<sub>3</sub> on particle surfaces into HNO<sub>3</sub>(ads) by reacting with NO<sub>3</sub>, and then 292 HNO<sub>3</sub>(ads) photolyzes at a faster rate to generate NO<sub>x</sub>, allowing HCHO to enhance 293 the formation of NO<sub>x</sub>. Overall, the photocatalytic renoxification of NO<sub>3</sub>-TiO<sub>2</sub> particles affects atmospheric oxidation and the nitrogen cycle, and the presence of 294 HCHO further enhances this impact. 295 296 Photocatalytic renoxification reaction occurs on the surfaces of mineral dust due to the presence of semiconductor oxides with photocatalytic activity such as TiO<sub>2</sub> 297 (Ndour et al., 2009). In this study, we selected the commercial mineral dust ATD to 298 study the effects of HCHO on this process. We detected ·OH in irradiated pure TiO<sub>2</sub> 299 300 and ATD samples using electron spin resonance (ESR) technique, and found that for ATD samples, the peak intensity of ·OH generation was 40% that of TiO<sub>2</sub> samples 301 (Figure S8). OH originates in the reaction of h with surface adsorbed water (Ahmed 302 et al., 2014). ATD contains semiconductor oxides such as TiO2 and Fe2O3, and is 303 thought to exhibit photocatalytic properties affecting the renoxification of nitrate. The 304  $NO_3^-$  content of ATD is  $4 \times 10^{17}$  molecules m<sup>-2</sup>, which is ~0.25 wt.% of the total mass 305 (Huang et al., 2015; Jiyeon et al., 2017). The NO<sub>x</sub> concentration changes observed in 306

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328





the environmental chamber demonstrated that HCHO promoted the renoxification of ATD particles (Figure S9). This result suggests that mineral dust containing photocatalytic semiconductor oxides such as TiO<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub>, and ZnO can greatly

promote the conversion of granular nitrate to  $NO_x$  in the presence of HCHO.

# 3.3 Influential factors on the photocatalytic renoxification process

# 3.3.1 The influence of nitrate type

As discussed above, HNO<sub>3</sub> and KNO<sub>3</sub> undergo different renoxification processes on the surface of TiO<sub>2</sub> under the same illumination conditions, suggesting that cations bound to NO<sub>3</sub><sup>-</sup> significantly affect NO<sub>x</sub> production. Different types of cations coexist with nitrate ions in atmospheric particulate matter, among which ammonium ions (NH<sub>4</sub><sup>+</sup>) are important water-soluble ions that can be higher in content than K<sup>+</sup> in urban fine particulate matter (Zhou et al., 2016; Tang et al., 2021; Wang et al., 2021), especially in heavily polluted cities. (Tian et al., 2020) Equal amounts of 4 wt.% NH<sub>4</sub>NO<sub>3</sub>-TiO<sub>2</sub> particles were introduced into the chamber and illuminated under the same conditions. HCHO had a much stronger positive effect on the release of NO<sub>x</sub> over NH<sub>4</sub>NO<sub>3</sub>-TiO<sub>2</sub> particles (Figure 3), which may be ascribed to NH<sub>4</sub><sup>+</sup>. Combined with the results of NH<sub>4</sub>NO<sub>3</sub>-TiO<sub>2</sub> particles and KNO<sub>3</sub>-TiO<sub>2</sub> particles, it seems that the affinity rather than electrostatic repulsion should be the primary effect of cations on the production of NO<sub>x</sub>. On substrates without photocatalytic activity such as SiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub>, NH<sub>4</sub>NO<sub>3</sub> cannot generate NO<sub>x</sub>, (Ma et al., 2021) such that NO<sub>x</sub> production depends on the effect of TiO<sub>2</sub>. The h<sup>+</sup> generated by TiO<sub>2</sub> excitation reacts with adsorbed H<sub>2</sub>O to produce ·OH (Eq. (9)), which gradually oxidizes NH<sub>4</sub><sup>+</sup> to NO<sub>3</sub><sup>-</sup> (Eq.

330

331

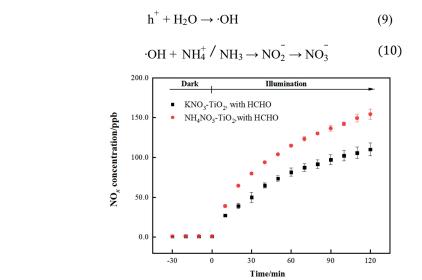
332

333

334

335

336


337

338





(10)). In our previous study, we demonstrated that irradiated (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>-TiO<sub>2</sub> samples had lower NH<sub>4</sub><sup>+</sup> and NO<sub>3</sub><sup>-</sup> peaks (Shang et al., 2017). Therefore, more NO<sub>3</sub><sup>-</sup> photocatalytic participated the renoxification in process via the NO<sub>3</sub>-NO<sub>3</sub>-HCHO-HNO<sub>3</sub>-NO<sub>x</sub> pathway to generate NO<sub>x</sub>. Moreover, the results without HCHO are shown in Figure 4a, both NH<sub>4</sub>NO<sub>3</sub>-TiO<sub>2</sub> particles and KNO<sub>3</sub>-TiO<sub>2</sub> particles produced almost no NOx, indicating the importance of HCHO for renoxification to occur. Due to the high content of NH<sub>4</sub>NO<sub>3</sub> in atmospheric particulate matter, the positive effect of HCHO on the photocatalytic renoxification process may have some impact on the concentrations of  $NO_x$  and other atmospheric oxidants.



**Figure 3.** Effect of formaldehyde on the renoxification processes of 4 wt.%

 $NH_4NO_3$ - $TiO_2$  and 4 wt.%  $KNO_3$ - $TiO_2$  particles at 293 K and 0.8% of relative humidity. 365 nm LED lamps were used during the irradiation experiment. The initial

concentration of HCHO was about 9 ppm.

344

343

339340

341

342

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

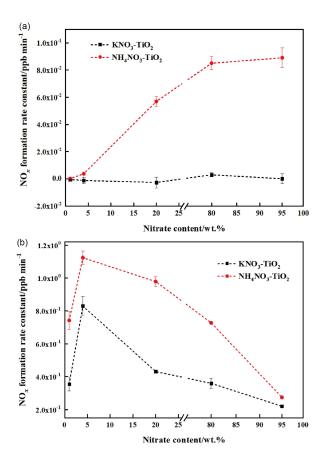
365

366





#### 3.3.2 The influence of nitrate content


346 Atmospheric particles have a wide range of nitrate content; differences in the relative amounts of nitrate and TiO2 in atmospheric particles may affect the renoxification process. Therefore, we investigated the effects of nitrate concentration gradients on renoxification. Changes in the NO<sub>x</sub> concentrations of NO<sub>3</sub><sup>-</sup>-TiO<sub>2</sub> composite particles, with or without HCHO, according to reaction time under 365 nm LED illumination confirmed zero-order reaction kinetics. Therefore, we applied zero-order rate constants to compare particles with different nitrate contents. For KNO<sub>3</sub>-TiO<sub>2</sub>, NO<sub>x</sub> was not generated in the absence of HCHO, even at high NO<sub>3</sub><sup>-</sup> nitrate concentrations (Figure 4a) because no photolysis of either NO<sub>3</sub> or the NO<sub>3</sub> radical occurred under 365 nm LED illumination. For NH<sub>4</sub>NO<sub>3</sub>-TiO<sub>2</sub>, the rate of NO<sub>x</sub> generation increased in the absence of HCHO as NH<sub>4</sub>NO<sub>3</sub> content increased, and at higher levels (80 and 95 wt.%), the NO<sub>x</sub> generation rate constant reached a plateau at  $\sim 8.0 \times 10^{-2}$  ppb min<sup>-1</sup> because both NH<sub>4</sub><sup>+</sup> and NO are photochemically oxidized on TiO<sub>2</sub> to generate NO<sub>3</sub><sup>-</sup>, and part of this NO was oxidized to NO<sub>2</sub> by O<sub>2</sub>.(Ma et al., 2021) Higher NO<sub>3</sub> content leads to higher NH<sub>4</sub><sup>+</sup> concentration; thus, more NH<sub>4</sub><sup>+</sup> participated in the generation of NO<sub>x</sub> through photooxidation. When NO<sub>3</sub> content reached 80 wt.% or higher, limited TiO<sub>2</sub> content in the chamber led to the saturation of NH<sub>4</sub><sup>+</sup> photooxidation, preventing further NO<sub>x</sub> generation. NO<sub>x</sub> release rates over NO<sub>3</sub><sup>-</sup>-TiO<sub>2</sub> as nitrate content increased in the presence of HCHO are shown in Figure 4b. The NO<sub>x</sub> production rate first increased and then decreased, with a maximum of 4 wt.% nitrate content among both KNO<sub>3</sub>-TiO<sub>2</sub> and NH<sub>4</sub>NO<sub>3</sub>-TiO<sub>2</sub> particles. This increasing trend was caused by the





increased opportunities for contact between TiO2 and NO3 as nitrate content 367 increased, which facilitated the combination of h with NO<sub>3</sub> to form NO<sub>3</sub>. The trend 368 began to decrease when nitrate content exceeded 4 wt.%. Higher NO<sub>3</sub> content 369 hindered reactions on the surface of TiO2, but rapidly decreased the Brunauer, Emmett 370 371 and Teller (BET) surface area of the composite particles (Shang et al., 2017), which weakened HCHO uptake and particle surface reactions. The amount of NO<sub>x</sub> produced 372 373 by NH<sub>4</sub>NO<sub>3</sub>-TiO<sub>2</sub> was consistently higher than that of KNO<sub>3</sub>-TiO<sub>2</sub>. The possible reasons for this difference are as follows. First, like the K<sup>+</sup> blocking effect discussed 374 in section 3.1, NO<sub>3</sub>· generated from the reaction of NO<sub>3</sub><sup>-</sup> with h<sup>+</sup> was weakened; thus, 375 little adsorbed HNO<sub>3</sub> was available for further renoxification. Additionally, NH<sub>4</sub><sup>+</sup> can 376 undergo a photooxidation reaction to generate more NO<sub>x</sub> by TiO<sub>2</sub>, as occurs in the 377 378 absence of HCHO.





380

381

382

383

384

385

386

387

388

**Figure 4.** Effect of nitrate content (1 wt.%, 4 wt.%, 20 wt.%, 80 wt.% and 95 wt.%) on the release of NO<sub>x</sub> for NH<sub>4</sub>NO<sub>3</sub>-TiO<sub>2</sub> and KNO<sub>3</sub>-TiO<sub>2</sub> at 293 K and 0.8% of relative humidity. 365 nm LED lamps were used during the illumination experiment.

(a) without HCHO; (b) the initial concentration of HCHO was about 9 ppm.

# 3.3.3 The influence of relative humidity

Water on particle surfaces can participate directly in the heterogeneous reaction process. As shown in Eq. (9),  $H_2O$  is captured by  $h^+$  to generate  $\cdot OH$  with strong oxidizability in photocatalytic reactions. The first-order photolysis rate constant of  $NO_3^-$  on  $TiO_2$  particles decreases by an order of magnitude, from  $(5.7 \pm 0.1) \times 10^{-4}$ 





 $s^{-1}$  on dry surfaces to  $(7.1 \pm 0.8) \times 10^{-5} s^{-1}$  when nitrate is coadsorbed with water 389 above monolayer coverage (Ostaszewski et al., 2018). We explored the positive effect 390 of HCHO on the NO<sub>3</sub>-TiO<sub>2</sub> particle photocatalytic renoxification at different RH 391 levels; the results are shown in Figure 5a. For KNO<sub>3</sub>-TiO<sub>2</sub> particles, the rate of NO<sub>x</sub> 392 393 production decreased as the RH of the environmental chamber increased, indicating that increased water content in the gas phase hindered photocatalytic renoxification 394 395 for two reasions: H<sub>2</sub>O competes with NO<sub>3</sub><sup>-</sup> for h<sup>+</sup> on the surface of TiO<sub>2</sub> to generate OH, reducing the generation of NO<sub>3</sub>, and competitive adsorption between 396 H<sub>2</sub>O and HCHO causes the generated ·OH to compete with NO<sub>3</sub>· for HCHO, 397 hindering the formation of HNO<sub>3</sub>(ads) on particle surfaces. Moreover, it is also 398 possible that the loss of NO<sub>x</sub> on the wall increases under high humidity conditions, 399 400 resulting in a decrease in its concentration. This competitive process also occurs on the surface of  $NH_4NO_3$ -TiO<sub>2</sub> particles, but at RH = 70%, the  $NO_x$  generation rate 401 constant is slightly higher. The deliquescent humidity of NH<sub>4</sub>NO<sub>3</sub> at 298 K is ~62%, 402 such that NH<sub>4</sub>NO<sub>3</sub> had already deliquesced at RH = 70%, forming an 403 NH<sub>4</sub><sup>+</sup>/NH<sub>3</sub>-NO<sub>3</sub><sup>-</sup> liquid system on the particle surfaces. This quasi-liquid phase 404 improved the dispersion of TiO<sub>2</sub> in NH<sub>4</sub>NO<sub>3</sub>, resulting in greater NO<sub>x</sub> release. The 405 deliquescent humidity of KNO<sub>3</sub>-TiO<sub>2</sub> was > 90%,(2009) such that no phase change 406 occurred at RH = 70%, and the renoxification reaction rate retained a downward trend. 407 In the presence of H<sub>2</sub>O, in addition to the NO<sub>3</sub>-NO<sub>3</sub>·-HCHO-HNO<sub>3</sub> pathway 408 observed in this study, there are a variety of HNO<sub>3</sub> generation paths, such as the 409 hydrolysis of N<sub>2</sub>O<sub>5</sub> via the NO<sub>2</sub>-N<sub>2</sub>O<sub>5</sub>-HNO<sub>3</sub> pathway (Brown et al., 2005), the 410





oxidation of NO<sub>2</sub> by ·OH (Burkholder et al., 1993), and the reaction of NO<sub>3</sub>· with 411 412 H<sub>2</sub>O (Schutze and Herrmann, 2005), all of which require further consideration and study. 413 The formation rates of NO and NO<sub>2</sub> are shown in Figure 5b and c, respectively. 414 415 NO<sub>2</sub> was the main product of surface HNO<sub>3</sub> photolysis. Under humid conditions, generated NO2(ads) continued to react with H2O adsorbed on the surface to form 416 417 HONO(ads). HONO was desorbed from the surface and released into the gas phase 418 (Zhou et al., 2003; Bao et al., 2018; Pandit et al., 2021), providing gaseous HONO to 419 the reaction system. Because the NO<sub>x</sub> concentration remained high, the effect of HONO on NO<sub>x</sub> analyzer results was negligible (Shi et al., 2021a). As NO<sub>2</sub> can form 420 NO<sub>2</sub> with e, a reverse reaction also occurred between NO<sub>2</sub> and HONO in the 421 422 presence of H<sub>2</sub>O (Ma et al., 2021; Garcia et al., 2021). Therefore, the increase in H<sub>2</sub>O increased the proportion of HONO in the nitrogen-containing products, such that the 423 NO<sub>x</sub> generation rate decreased as RH increased. Comparing Figure 5b and c shows 424 that, as RH increased, the NO production rate constant decreased more than that of 425 426 NO2. HONO and NO2 generated by the photolysis of HNO3(ads) decreased accordingly, i.e., the NO source decreased. However, generated NO2 and NO 427 underwent photocatalytic oxidation on the surface of TiO2, and NO photodegradation 428 was more significant under the same conditions (Hot et al., 2017). Generally, a certain 429 amount of HONO will be generated during the reaction between HCHO and 430 NO<sub>3</sub>-TiO<sub>2</sub> particles when RH is high, which affects the concentrations of 431 atmospheric ·OH, NO<sub>x</sub>, and O<sub>3</sub>. This process is more likely to occur in summer due to 432

434

435

436

437

4.0x10

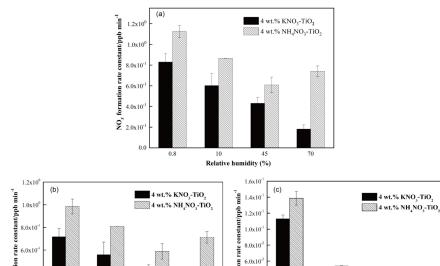
2.0x10

438 439

440

441

442


443

444

445



high RH and light intensity affecting atmospheric oxidation. In drier winters or dusty weather, when  $TiO_2$  content is high, HCHO greatly promotes the photocatalytic renoxification of  $NO_3$ - $TiO_2$  particles, thereby releasing more  $NO_x$  into the atmosphere, affecting the global atmospheric nitrogen budget. Thus, regardless of the seasonal and regional changes, renoxification has significant practical importance.



**Figure 5.** Effect of relative humidity on the release of NO<sub>x</sub> (a), NO<sub>2</sub> (b), NO (c) over 4 wt.% NH<sub>4</sub>NO<sub>3</sub>-TiO<sub>2</sub> and 4 wt.% KNO<sub>3</sub>-TiO<sub>2</sub> particles at 293 K. 365 nm LED lamps were used during the illumination experiment. The initial concentration of HCHO was about 9 ppm.

Q 2.0x10

# 3.3.4 The influence of initial HCHO concentration

To explore whether HCHO promotes nitrate renoxification at natural concentration levels, we reduced the initial concentration of HCHO in the environmental chamber

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467





by a factor of 10, to ~1.0 ppm. The positive effect of HCHO on the photocatalytic renoxification of KNO<sub>3</sub>-TiO<sub>2</sub> particles was clearly weakened, with NO<sub>2</sub> concentration first increasing and then decreasing, and NO concentration remaining stable (Figure S10). The HCHO concentration decreased due to its consumption during the reaction, making its positive effect decline quickly. The photocatalytic oxidation reaction between NO<sub>x</sub> and photogenerated reactive oxygen species (ROS) on the TiO<sub>2</sub> surface further decreased the  $NO_x$  concentration. Photocatalytic oxidation of  $NO_x$  by ROS on TiO<sub>2</sub> particles occurred at an HCHO concentration of 9 ppm, but the positive effect of HCHO remained dominant. Thus, no decrease in NO<sub>x</sub> concentration was observed within 120 min in our experiments. The concentration of HCHO in the atmosphere is relatively low, with a balance between the photocatalytic oxidation decay of NO<sub>x</sub> and the release of NO<sub>x</sub> via photocatalytic renoxification. The mutual transformation between particulate NO<sub>3</sub> and gaseous NO<sub>x</sub> is more complex. The effect of low-concentration HCHO on the renoxification of NO<sub>3</sub><sup>-</sup>-TiO<sub>2</sub> particles requires further investigation. However, many types of organics provide hydrogen atoms in the atmosphere, including alkanes (e.g., methane and n-hexane), aldehydes (e.g., acetaldehyde), alcohols (e.g., methanol and ethanol), and aromatic compounds (e.g., phenol) that react with NO<sub>3</sub>· to produce nitric acid (Atkinson, 1991). These organics, together with HCHO, play similar positive roles in photocatalytic renoxification and, therefore, influence  $NO_x$  concentrations.

### 4 Atmospheric implications

Nitric acid and nitrate are not only the final sink of NO<sub>x</sub> in the atmosphere but

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489





are also among its important sources. NO<sub>x</sub> from nitrate through renoxification is easily overlooked. The renoxification of nitrate on the surface of TiO<sub>2</sub> particles can be divided into photolytic renoxification and photocatalytic renoxification. The photocatalytic performance of TiO2 promotes the renoxification process, which explains the influence of semiconducting metal oxide components on atmospheric mineral particles during the renoxification of nitrate. Although most previous studies have focused on solid-phase nitrate renoxification, our exploration of the roles of HCHO in this study will allow us to examine complex real-world pollution scenarios, in which multiple atmospheric pollutants coexist, as well as the effects of organic pollutants on the renoxification process. Atmospheric HCHO is taken up at the surface of particulate matter, accounting for up to ~50% of its absorption (Li et al., 2014), such that the heterogeneous participation of HCHO during renoxification is important. This study is the first to report that HCHO has a positive effect on the photocatalytic renoxification TiO<sub>2</sub> of nitrate on particles, via the NO<sub>3</sub>-NO<sub>3</sub>-HCHO-HNO<sub>3</sub>-NO<sub>x</sub> pathway (Figure 6), further increasing the release of NO<sub>x</sub> and other nitrogen-containing active species, which in turn affects the photochemical cycle of HO<sub>x</sub> radicals in the atmosphere and the formation of important atmospheric oxidants such as O3. Factors such as particulate matter composition, RH, and initial HCHO concentration all influence the positive effect of HCHO; notably, H<sub>2</sub>O competes with NO<sub>3</sub> for photogenerated holes. Based on these findings, two balance systems should be explored in depth: the influence of RH on the generation rates of HONO and NOx, as water increases the proportion of HONO in





nitrogen-containing products; and the balance between the photocatalytic degradation of generated  $NO_x$  on  $TiO_2$  particles and the positive effect of HCHO on  $NO_x$ generation at low HCHO concentrations.

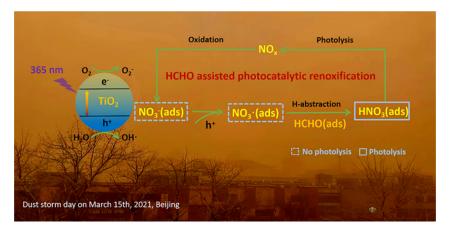



Figure 6. Positive role of HCHO on the photocatalytic renoxification of nitrate-TiO<sub>2</sub>

composite particles via the  $NO_3^-$ - $NO_3$ -HCHO-HNO<sub>3</sub>- $NO_x$  pathway.

Based on our results, we conclude that in photochemical processes on the surfaces of particles containing semiconductor oxides, with the participation of hydrogen donor organics, a significant synergistic photocatalytic renoxification enhancement effect alters the composition of surface nitrogenous species via the NO<sub>3</sub><sup>-</sup>-NO<sub>3</sub>·-hydrogen donor-HNO<sub>3</sub>-NO<sub>x</sub> pathway, thereby affecting atmospheric oxidation and nitrogen cycling. The positive effect of HCHO can be extended from TiO<sub>2</sub> in this study to other components of mineral dust such as Fe<sub>2</sub>O<sub>3</sub> and ZnO with photocatalytic activity, which may have practical applications. Our proposed reaction mechanism by which HCHO promotes photocatalytic renoxification will improve existing atmospheric chemistry models and reduce discrepancies between model simulations and field observations.





508 Supplement. Detailed information of Figures S1-10 (which include the spectra of the lamps, 509 size distribution of TiO2 particles and changes of HCHO concentration in 510 environmental chamber, changes of NO<sub>x</sub> concentration under different reaction 511 conditions, photodegradation curve of HCHO, ESR spectra of TiO2 and ATD 512 513 particles), and Table S1 (which demonstrate ATD chemical composition). 514 515 Acknowledgments The authors are grateful to the financial support provided by National Natural 516 Science Foundation of China (Nos. 21876003, 41961134034 and 21277004), the 517 Second Tibetan Plateau Scientific Expedition and Research (No. 2019QZKK0607), 518 and the 111 Project Urban Air Pollution and Health Effects (B20009). 519 520 References 521 Ahmed, A. Y., Kandiel, T. A., Ivanova, I., and Bahnemann, D.: Photocatalytic and 522 photoelectrochemical oxidation mechanisms of methanol on TiO<sub>2</sub> in aqueous solution, 523 524 Appl.Surf. Sci., 319, 44-49, 10.1016/j.apsusc.2014.07.134, 2014. Aldener, M., Brown, S. S., Stark, H., Williams, E. J., Lerner, B. M., Kuster, W. C., 525 Goldan, P. D., Quinn, P. K., Bates, T. S., Fehsenfeld, F. C., and Ravishankara, A. R.: 526 Reactivity and loss mechanisms of NO<sub>3</sub> and N<sub>2</sub>O<sub>5</sub> in a polluted marine environment: 527 Results from in situ measurements during New England Air Quality Study 2002, J. 528 Geophys. Res-Atmos., 111, 10.1029/2006jd007252, 2006. 529 Alexander, B., Sherwen, T., Holmes, C. D., Fisher, J. A., Chen, Q., Evans, M. J., and 530 Kasibhatla, P.: Global inorganic nitrate production mechanisms: comparison of a 531





- 532 global model with nitrate isotope observations, Atmos. Chem. Phys., 20, 3859-3877,
- 533 10.5194/acp-20-3859-2020, 2020.
- 534 Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the NO<sub>3</sub> radical
- with organic-comounds, J. Phys. and Chem. Ref. Data, 20, 459-507,
- 536 10.1063/1.555887, 1991.
- 537 Baergen, A. M. and Donaldson, D. J.: Photochemical Renoxification of Nitric Acid on
- 538 Real Urban Grime, Environ. Sci. Technol., 47, 815-820, 10.1021/es3037862, 2013.
- 539 Bao, F., Li, M., Zhang, Y., Chen, C., and Zhao, J.: Photochemical Aging of Beijing
- 540 Urban PM<sub>2.5</sub>: HONO Production, Environ. Sci. Technol., 52, 6309-6316,
- 541 10.1021/acs.est.8b00538, 2018.
- 542 Bao, F., Jiang, H., Zhang, Y., Li, M., Ye, C., Wang, W., Ge, M., Chen, C., and Zhao, J.:
- The Key Role of Sulfate in the Photochemical Renoxification on Real PM<sub>2.5</sub>, Environ.
- 544 Sci. Technol., 54, 3121-3128, 10.1021/acs.est.9b06764, 2020.
- 545 Bedjanian, Y. and El Zein, A.: Interaction of NO<sub>2</sub> with TiO<sub>2</sub> Surface Under UV
- 546 Irradiation: Products Study, J. Phys. Chem. A, 116, 1758-1764, 10.1021/jp210078b,
- 547 2012.
- 548 Brown, S. S., Osthoff, H. D., Stark, H., Dube, W. P., Ryerson, T. B., Warneke, C., de
- Gouw, J. A., Wollny, A. G., Parrish, D. D., Fehsenfeld, F. C., and Ravishankara, A. R.:
- 550 Aircraft observations of daytime NO<sub>3</sub> and N<sub>2</sub>O<sub>5</sub> and their implications for
- 551 tropospheric chemistry, J. Photochem. Photobio. A, 176, 270-278,
- 552 10.1016/j.jphotochem.2005.10.004, 2005.
- 553 Burkholder, J. B., Talukdar, R. K., Ravishankara, A. R., and Solomon, S.:
- 554 Temperature-dependence of the HNO<sub>3</sub> UV absorption cross-sections. J.
- 555 Geophys.Res-Atmos., 98, 22937-22948, 10.1029/93jd02178, 1993.
- 556 Chen, H., Nanayakkara, C. E., and Grassian, V. H.: Titanium Dioxide Photocatalysis
- in Atmospheric Chemistry, Chem. Rev., 112, 5919-5948, 10.1021/cr3002092, 2012.
- Deng, J. J., Wang, T. J., Liu, L., and Jiang, F.: Modeling heterogeneous chemical
- 559 processes on aerosol surface, Particuology, 8, 308-318, 10.1016/j.partic.2009.12.003,
- 560 2010.
- 561 Dentener, F. J. and Crutzen, P. J.: Reaction of N<sub>2</sub>O<sub>5</sub> on tropospheric aerosols-impact





- on the global distributions od NOx, O3, and OH. J. Geophys. Res-Atmos., 98,
- 563 7149-7163, 10.1029/92jd02979, 1993.
- Du, J. and Zhu, L.: Quantification of the absorption cross sections of surface-adsorbed
- 565 nitric acid in the 335-365 nm region by Brewster angle cavity ring-down spectroscopy,
- 566 Chem. Phys. Lett., 511, 213-218, 10.1016/j.cplett.2011.06.062, 2011.
- 567 Finlayson-Pitts, B. J. and Pitts, J. J. N.: Chemistry of the Upper and Lower
- Atmosphere: Theory, Experiments and Applications, Academic Press1999.
- 569 Garcia, S. L. M., Pandit, S., Navea, J. G., and Grassian, V. H.: Nitrous Acid (HONO)
- 570 Formation from the Irradiation of Aqueous Nitrate Solutions in the Presence of
- 571 Marine Chromophoric Dissolved Organic Matter: Comparison to Other Organic
- 572 Photosensitizers, Acs Earth and Space Chem., 5, 3056-3064,
- 573 10.1021/acsearthspacechem.1c00292, 2021.
- 574 George, C., Ammann, M., D'Anna, B., Donaldson, D. J., and Nizkorodov, S. A.:
- 575 Heterogeneous Photochemistry in the Atmosphere, Chem. Rev., 115, 4218-4258,
- 576 10.1021/cr500648z, 2015.
- 577 Goodman, A. L., Bernard, E. T., and Grassian, V. H.: Spectroscopic study of nitric
- 578 acid and water adsorption on oxide particles: Enhanced nitric acid uptake kinetics in
- 579 the presence of adsorbed water, J. Phys. Chem. A, 105, 6443-6457,
- 580 10.1021/jp0037221, 2001.
- 581 Harris, G. W., Carter, W. P. L., Winer, A. M., Pitts, J. N., Platt, U., and Perner, D.:
- 582 Observations of nitrous-acid in the los-angeles atmosphere and implications for
- 583 predictions of ozone precursor relationships. Environ. Sci. Technol., 16, 414-419,
- 584 10.1021/es00101a009, 1982.
- 585 Hot, J., Martinez, T., Wayser, B., Ringot, E., and Bertron, A.: Photocatalytic
- degradation of NO/NO<sub>2</sub> gas injected into a 10 m<sup>3</sup> experimental chamber, Environ. Sci.
- Pollut. R., 24, 12562-12570, 10.1007/s11356-016-7701-2, 2017.
- Huang, L., Zhao, Y., Li, H., and Chen, Z.: Kinetics of Heterogeneous Reaction of
- 589 Sulfur Dioxide on Authentic Mineral Dust: Effects of Relative Humidity and
- 590 Hydrogen Peroxide, Environ. Sci. Technol., 49, 10797-10805,
- 591 10.1021/acs.est.5b03930, 2015.





- 592 Jiyeon, Park, Myoseon, Jang, Zechen, and Yu: Heterogeneous Photo-oxidation of SO<sub>2</sub>
- 593 in the Presence of Two Different Mineral Dust Particles: Gobi and Arizona Dust,
- Environ. Sci. Technol., 2017.
- 595 Kasibhatla, P., Sherwen, T., Evans, M. J., Carpenter, L. J., Reed, C., Alexander, B.,
- 596 Chen, Q., Sulprizio, M. P., Lee, J. D., Read, K. A., Bloss, W., Crilley, L. R., Keene, W.
- 597 C., Pszenny, A. A. P., and Hodzic, A.: Global impact of nitrate photolysis in sea-salt
- 598 aerosol on NO<sub>x</sub>, OH, and O<sub>3</sub> in the marine boundary layer, Atmos. Chem. Phys., 18,
- 599 11185-11203, 10.5194/acp-18-11185-2018, 2018.
- 600 Kim, W.-H., Song, J.-M., Ko, H.-J., Kim, J. S., Lee, J. H., and Kang, C.-H.:
- 601 Comparison of Chemical Compositions of Size-segregated Atmospheric Aerosols
- 602 between Asian Dust and Non-Asian Dust Periods at Background Area of Korea, B.
- 603 Korean Chem. Soc., 33, 3651-3656, 10.5012/bkcs.2012.33.11.3651, 2012.
- 604 Lee, J. D., Moller, S. J., Read, K. A., Lewis, A. C., Mendes, L., and Carpenter, L. J.:
- 605 Year-round measurements of nitrogen oxides and ozone in the tropical North Atlantic
- 606 marine boundary layer, J. Geophys. Res-Atmos., 114, 10.1029/2009jd011878, 2009.
- 607 Lesko, D. M. B., Coddens, E. M., Swomley, H. D., Welch, R. M., Borgatta, J., and
- Navea, J. G.: Photochemistry of nitrate chemisorbed on various metal oxide surfaces,
- 609 Phys. Chem. Chem. Phys., 17, 20775-20785, 10.1039/c5cp02903a, 2015.
- 610 Li, L., Wang, Q., Zhang, X., She, Y., Zhou, J., Chen, Y., Wang, P., Liu, S., Zhang, T.,
- Dai, W., Han, Y., and Cao, J.: Characteristics of single atmospheric particles in a
- 612 heavily polluted urban area of China: size distributions and mixing states, Environ.
- 613 Sci. Pollut. R., 26, 11730-11742, 10.1007/s11356-019-04579-3, 2019.
- 614 Li, X., Rohrer, F., Brauers, T., Hofzumahaus, A., Lu, K., Shao, M., Zhang, Y. H., and
- 615 Wahner, A.: Modeling of HCHO and CHOCHO at a semi-rural site in southern China
- 616 during the PRIDE-PRD2006 campaign, Atmos. Chem. Phys., 14, 12291-12305,
- 617 10.5194/acp-14-12291-2014, 2014.
- 618 Linsebigler, A. L., Lu, G. Q., and Yates, J. T.: hotocatalysis on TiO2
- 619 surfaces-principles, mechanisms, and selected results, Chem. Rev., 95, 735-758,
- 620 10.1021/cr00035a013, 1995.
- 621 Ma, Q., Zhong, C., Ma, J., Ye, C., Zhao, Y., Liu, Y., Zhang, P., Chen, T., Liu, C., Chu,





- 622 B., and He, H.: Comprehensive Study about the Photolysis of Nitrates on Mineral
- Oxides, Environ. Sci. Technol., 55, 8604-8612, 10.1021/acs.est.1c02182, 2021.
- 624 Monge, M. E., D"Anna, B., and George, C.: Nitrogen dioxide removal and nitrous
- 625 acid formation on titanium oxide surfaces--an air quality remediation process? Phys.
- 626 Chem. Chem. Phys., 12, 8991-8998, 2010.
- Ndour, M., Conchon, P., D'Anna, B., Ka, O., and George, C.: Photochemistry of
- 628 mineral dust surface as a potential atmospheric renoxification process, Geophysical
- Research Letters, 36, 4, 10.1029/2008gl036662, 2009.
- Ninneman, M., Lu, S., Zhou, X. L., and Schwab, J.: On the Importance of
- 631 Surface-Enhanced Renoxification as an Oxides of Nitrogen Source in Rural and
- 632 Urban New York State, Acs Earth and Space Chem., 4, 1985-1992,
- 633 10.1021/acsearthspacechem.0c00185, 2020.
- 634 Ostaszewski, C. J., Stuart, N. M., Lesko, D. M. B., Kim, D., Lueckheide, M. J., and
- Navea, J. G.: Effects of Coadsorbed Water on the Heterogeneous Photochemistry of
- 636 Nitrates Adsorbed on TiO<sub>2</sub>, J. Phys. Chem. A, 122, 6360-6371,
- 637 10.1021/acs.jpca.8b04979, 2018.
- 638 Pandit, S., Garcia, S. L. M., and Grassian, V. H.: HONO Production from Gypsum
- 639 Surfaces Following Exposure to NO2 and HNO3: Roles of Relative Humidity and
- 640 Light Source, Environ. Sci. Technol., 55, 9761-9772, 10.1021/acs.est.1c01359, 2021.
- 641 Platt, U., Perner, D., Harris, G. W., Winer, A. M., and Pitts, J. N.: Observations of
- 642 nitrous-acid in an urban atmosphere by differential optical-absorption, Nature, 285,
- 643 312-314, 10.1038/285312a0, 1980.
- Read, K. A., Mahajan, A. S., Carpenter, L. J., Evans, M. J., Faria, B. V. E., Heard, D.
- E., Hopkins, J. R., Lee, J. D., Moller, S. J., Lewis, A. C., Mendes, L., McQuaid, J. B.,
- 646 Oetjen, H., Saiz-Lopez, A., Pilling, M. J., and Plane, J. M. C.: Extensive
- halogen-mediated ozone destruction over the tropical Atlantic Ocean, Nature, 453,
- 648 1232-1235, 10.1038/nature07035, 2008.
- Reed, C., Evans, M. J., Crilley, L. R., Bloss, W. J., Sherwen, T., Read, K. A., Lee, J.
- 650 D., and Carpenter, L. J.: Evidence for renoxification in the tropical marine boundary
- 651 layer, Atmos. Chem. Phys., 17, 4081-4092, 10.5194/acp-17-4081-2017, 2017.





- Romer, P. S., Wooldridge, P. J., Crounse, J. D., Kim, M. J., Wennberg, P. O., Dibb, J.
- E., Scheuer, E., Blake, D. R., Meinardi, S., Brosius, A. L., Thames, A. B., Miller, D.
- 654 O., Brune, W. H., Hall, S. R., Ryerson, T. B., and Cohen, R. C.: Constraints on
- 655 Aerosol Nitrate Photolysis as a Potential Source of HONO and NO<sub>x</sub>, Environ. Sci.
- 656 Technol., 52, 13738-13746, 10.1021/acs.est.8b03861, 2018.
- 657 Rosseler, O., Sleiman, M., Nahuel Montesinos, V., Shavorskiy, A., Keller, V., Keller,
- 658 N., Litter, M. I., Bluhm, H., Salmeron, M., and Destaillats, H.: Chemistry of  $NO_x$  on
- 659 TiO<sub>2</sub> Surfaces Studied by Ambient Pressure XPS: Products, Effect of UV Irradiation,
- 660 Water, and Coadsorbed K<sup>+</sup>, J.Phys. Chem. Lett., 4, 536-541, 10.1021/jz302119g,
- 661 2013.
- 662 Schuttlefield, J., Rubasinghege, G., El-Maazawi, M., Bone, J., and Grassian, V. H.:
- Photochemistry of adsorbed nitrate, J. Am. Chem. Soc., 130, 12210-+,
- 664 10.1021/ja802342m, 2008.
- 665 Schutze, M. and Herrmann, H.: Uptake of the NO<sub>3</sub> radical on aqueous surfaces, J.
- 666 Atmos. Chem., 52, 1-18, 10.1007/s10874-005-6153-8, 2005.
- 667 Schwartz-Narbonne, H., Jones, S. H., and Donaldson, D. J.: Indoor Lighting Releases
- 668 Gas Phase Nitrogen Oxides from Indoor Painted Surfaces, Environ. Sci. Technol.
- 669 Lett., 6, 92-97, 10.1021/acs.estlett.8b00685, 2019.
- 670 Seltzer, K. M., Vizuete, W., and Henderson, B. H.: Evaluation of updated nitric acid
- chemistry on ozone precursors and radiative effects, Atmos. Chem. Phys., 15,
- 672 5973-5986, 10.5194/acp-15-5973-2015, 2015.
- 673 Shang, J., Xu, W. W., Ye, C. X., George, C., and Zhu, T.: Synergistic effect of
- 674 nitrate-doped TiO<sub>2</sub> aerosols on the fast photochemical oxidation of formaldehyde, Sci.
- 675 Rep., 7, 10.1038/s41598-017-01396-x, 2017.
- 676 Shi, Q., Tao, Y., Krechmer, J. E., Heald, C. L., and Ye, Q.: Laboratory Investigation of
- 677 Renoxification from the Photolysis of Inorganic Particulate Nitrate, Environ. Sci.
- 678 Technol., 55, 2021a.
- 679 Shi, Q., Tao, Y., Krechmer, J. E., Heald, C. L., Murphy, J. G., Kroll, J. H., and Ye, Q.:
- 680 Laboratory Investigation of Renoxification from the Photolysis of Inorganic
- 681 Particulate Nitrate, Environ. Sci. Technol. 55, 854-861, 10.1021/acs.est.0c06049,





- 682 2021b.
- 683 Stemmler, K., Ammann, M., Donders, C., Kleffmann, J., and George, C.:
- Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous
- acid, Nature, 440, 195-198, 10.1038/nature04603, 2006.
- 686 Sun, Y. L., Zhuang, G. S., Wang, Y., Zhao, X. J., Li, J., Wang, Z. F., and An, Z. S.:
- 687 Chemical composition of dust storms in Beijing and implications for the mixing of
- 688 mineral aerosol with pollution aerosol on the pathway, J. Geophys. Res-Atmos., 110,
- 689 10.1029/2005jd006054, 2005.
- 690 Tang, M., Liu, Y., He, J., Wang, Z., Wu, Z., and Ji, D.: In situ continuous hourly
- observations of wintertime nitrate, sulfate and ammonium in a megacity in the North
- 692 China plain from 2014 to 2019: Temporal variation, chemical formation and regional
- transport, Chemosphere, 262, 10.1016/j.chemosphere.2020.127745, 2021.
- 694 Tian, S. S., Liu, Y. Y., Wang, J., Wang, J., Hou, L. J., Lv, B., Wang, X. H., Zhao, X. Y.,
- 695 Yang, W., Geng, C. M., Han, B., and Bai, Z. P.: Chemical Compositions and Source
- 696 Analysis of PM<sub>2.5</sub> during Autumn and Winter in a Heavily Polluted City in China,
- 697 Atmosphere, 11, 19, 10.3390/atmos11040336, 2020.
- 698 Verbruggen, S. W.: TiO<sub>2</sub> photocatalysis for the degradation of pollutants in gas phase:
- 699 From morphological design to plasmonic enhancement, J. Photoch. Photobio.C, 24,
- 700 64-82, 10.1016/j.jphotochemrev.2015.07.001, 2015.
- 701 Wang, H., Miao, Q., Shen, L., Yang, Q., Wu, Y., Wei, H., Yin, Y., Zhao, T., Zhu, B.,
- 702 and Lu, W.: Characterization of the aerosol chemical composition during the
- 703 COVID-19 lockdown period in Suzhou in the Yangtze River Delta, China, J. Environ.
- 704 Sci., 102, 110-122, 10.1016/j.jes.2020.09.019, 2021.
- 705 Wang, Z., Ma, Y., Zheng, J., Li, S., Wang, L., and Zhang, Y.: Source apportionment of
- 706 aerosols in urban Nanjing based on particle size distribution, Huanjing
- 707 Huaxue-Environmental Chemistry, 34, 1619-1626,
- 708 10.7524/j.issn.0254-6108.2015.09.2015020303, 2015.
- 709 Wayne, R. P., Barnes, I., Biggs, P., Burrows, J. P., Canosamas, C. E., Hjorth, J., Lebras,
- 710 G., Moortgat, G. K., Perner, D., Poulet, G., Restelli, G., and Sidebottom, H.: The
- 711 nitrate radical-physics, chemistry, and the atmosphere. Atmos. Environ. Part A, 25,





- 712 1-203, 10.1016/0960-1686(91)90192-a, 1991.
- 713 Ye, C., Gao, H., Zhang, N., and Zhou, X.: Photolysis of Nitric Acid and Nitrate on
- 714 Natural and Artificial Surfaces, Environ. Sci. Technol., 50, 3530-3536,
- 715 10.1021/acs.est.5b05032, 2016a.
- 716 Ye, C., Zhang, N., Gao, H., and Zhou, X.: Photolysis of Particulate Nitrate as a Source
- 717 of HONO and NO<sub>x</sub>, Environ. Sci. Technol., 51, 6849-6856, 10.1021/acs.est.7b00387,
- 718 2017.
- 719 Ye, C., Zhou, X., Pu, D., Stutz, J., Festa, J., Spolaor, M., Tsai, C., Cantrell, C.,
- 720 Mauldin, R. L., III, Campos, T., Weinheimer, A., Hornbrook, R. S., Apel, E. C.,
- Guenther, A., Kaser, L., Yuan, B., Karl, T., Haggerty, J., Hall, S., Ullmann, K., Smith,
- 722 J. N., Ortega, J., and Knote, C.: Rapid cycling of reactive nitrogen in the marine
- boundary layer, Nature, 532, 489-491, 10.1038/nature17195, 2016b.
- 724 Zhou, J. B., Xing, Z. Y., Deng, J. J., and Du, K.: Characterizing and sourcing ambient
- 725 PM<sub>2.5</sub> over key emission regions in China I: Water-soluble ions and carbonaceous
- 726 fractions, Atmos. Environ., 135, 20-30, 10.1016/j.atmosenv.2016.03.054, 2016.
- 727 Zhou, X. L., Gao, H. L., He, Y., Huang, G., Bertman, S. B., Civerolo, K., and Schwab,
- 728 J.: Nitric acid photolysis on surfaces in low-NO<sub>x</sub> environments: Significant
- 729 atmospheric implications, Geophy. Res. Lett., 30, 10.1029/2003gl018620, 2003.